74 research outputs found

    Deadlock checking by a behavioral effect system for lock handling

    Get PDF
    AbstractDeadlocks are a common error in programs with lock-based concurrency and are hard to avoid or even to detect. One way for deadlock prevention is to statically analyze the program code to spot sources of potential deadlocks. Often static approaches try to confirm that the lock-taking adheres to a given order, or, better, to infer that such an order exists. Such an order precludes situations of cyclic waiting for each other’s resources, which constitute a deadlock.In contrast, we do not enforce or infer an explicit order on locks. Instead we use a behavioral type and effect system that, in a first stage, checks the behavior of each thread or process against the declared behavior, which captures potential interaction of the thread with the locks. In a second step on a global level, the state space of the behavior is explored to detect potential deadlocks. We define a notion of deadlock-sensitive simulation to prove the soundness of the abstraction inherent in the behavioral description. Soundness of the effect system is proven by subject reduction, formulated such that it captures deadlock-sensitive simulation.To render the state-space finite, we show two further abstractions of the behavior sound, namely restricting the upper bound on re-entrant lock counters, and similarly by abstracting the (in general context-free) behavioral effect into a coarser, tail-recursive description. We prove our analysis sound using a simple, concurrent calculus with re-entrant locks

    Stream-based dynamic data race detection

    Get PDF
    Detecting data races in modern code executing on multicore processors is challenging. Instrumentation-based techniques for race detection not only have a high performance impact, but also are not likely to be certified for safety-critical systems. This paper presents a data race detector based on the well-known lockset algorithm in the runtime verification language TeSSLa, which is a stream-based specification using dynamic data structures to record lock operations and memory accesses. Such a specification can then be instantiated with particular parameters to make it suitable for the more limited planned monitoring using field- programmable gate arrays

    I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking

    Get PDF
    Under embargo until: 2023-07-04Static analysers are traditionally used to check various correctness properties of software. In the face of refactorings that can have adverse effects on correctness, developers need to analyse the code after refactoring and possibly revert their changes. Here, we take a different approach: we capture the effect of the Hide Delegate refactoring on programs in the ABS modelling language in terms of the base program, which allows us to predict the correctness of the refactored program. In particular, we focus on deadlock-detection. The actual check is encoded with the help of an additional data structure and assertions. Developers can then attempt to discharge assertions as vacuous with the help of a theorem prover such as KeY. On the one hand, this means that we do not require a specific static analyser nor theorem prover, but rather profit from the strength and advances of modern tool support. On the other hand, developers can choose to rely on existing tests to confirm that no assertion is triggered before executing the actual refactoring. Finally, we argue the correctness of our over-approximation.acceptedVersio

    From SOS to Asynchronously Communicating Actors

    Get PDF
    Structural Operational Semantics (SOS) provides a general format to describe a model as a transition system with very powerful synchronization mechanisms. Actor systems are distributed, asynchronously communicating units of computation with encapsulated state, with much weaker means of synchronizing between actors. In this paper, we discuss an implementation of a SOS model using actors in the object-oriented actor language ABS and how to argue that global properties about the model are inherited from the SOS level to the actor implementation. The work stems from a case study modelling the memory system of a cache-coherent multicore architecture

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    Get PDF
    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis
    corecore